The term electric mobility (e-mobility) describes all modes of mobility/transport that derive part of their energy required for propulsion from electrical energy. Electric mobility can be used for the transport of both passengers and goods. E-mobility based on renewable energy is regarded as a central component of transport decarbonization efforts.

Electric vehicles can be operated exclusively or partially by an electric motor. Common examples for electric vehicles are e-buses, e-bikes, electric cars, electrified trains, trams etc.). Depending on the different varieties of electric vehicles a combustion engine is either not needed or used in complementary to the electric drive system.

In general, almost all types of transport can be electrified. Especially rail-based transport such as railways, subways, trams etc. have a long history of operating on electrical energy (mostly via overhead-lines). Other modes such as road-based transport with vehicles such as light- and heavy-duty vehicles, two-and-three-wheelers, buses and cars are common modes of transport with great electrification potential.

Further, multiple forms of micro-mobility like bicycles and kick-scooters have recently seen a spike in electrification. Especially electric pedelecs and e-scooters have spread to many countries and cities over the last years. Privately owned or as part of rental services they are considered to be the link between other modes of transport (e.g. trains, metro, buses, trams) and offer mobility for the “first and last mile”.

Furthermore water-bound vehicles like small boats, ships, ferries and submarines can also be electrified either when they are moored /docked on harbor or when the vehicles are sailing in water. Few countries like Norway have already made progress by providing necessary shore power infrastructure. The shore power infrastructure power ship’s load like lighting, heating/cooling, auxiliaries and for charging ship’s batteries in docked condition alongside a port facility.

So far, short-haul electric aviation is in its pilot phase and could be on the market by mid-decade, but long-haul flying will require new solutions. An overview of electric flying projects is available from the International Civil Aviation Organisation:

For more information read Meyer (2017): Electrification of the Transport System

Many publications refer to the terms of BEV, PHEV and FCEVs. Here we explain the differences. Disclaimer: Even though the terms “vehicle” refers to different transport modes, usually the following abbreviations are used in the context of passenger cars.


A pure battery electric vehicle (BEV) derives all its energy required for propulsion exclusively from electrical energy. A BEV comes with an onboard electrical energy storage device (battery) and an electric motor.


A plug-in hybrid vehicle (PHEV) is a motor vehicle with a hybrid drive which combines an internal combustion engine with an electric motor. Due to a relatively small battery capacity a PHEV can be driven on pure electric mode for smaller distances (up to 50 km). The battery can be charged both from the internal combustion engine and from the external power supply.


A fuel cell electric vehicle (FCEV) is a vehicle which uses a fuel cell to power its electric motor. FCEVs produce electricity with an onboard fuel cell which is powered by hydrogen or methanol. Generally, fuel cell electric vehicles also have a small battery which is used to recapture the breaking energy with an aim to provide extra during short acceleration events.

For further information visit

The range extender is an additional unit in an electric vehicle that serves to extend the range of the vehicle. The most commonly used range extenders are (small) internal combustion engines that drive a generator, which in turn supplies the battery and electric motor with power. The range extender can be started manually, or it can start automatically when the battery charge level has fallen below a certain threshold. The system is explicitly intended for vehicles with a small battery capacity and electrical range. The technology has been introduced to cope with the “range anxiety”, which was common for the first generation of electric vehicles.

The Chevrolet Volt (2010) was one first mass market EVs to be available with an optional range extender. Some bus manufacturers also offer fuel cells operated with hydrogen or methanol as range extenders for their battery electric buses.


In comparison with internal combustion engine (ICE) vehicles, electric vehicles come with a lot of advantages in terms of environmental impact. First, electric vehicles, do not produce any tailpipe emissions like particulate matter (pmx) or nitrogen oxides (NOx) which are common sources of ambient air pollution. Second, when charged with electricity from renewable sources, they help reduce overall CO2 emissions. Further EVs cause less noise than conventional vehicles, at least to a speeds of up to 30-40 km/h.

All vehicles come along with a negative environmental footprint. Every vehicle production requires a lot of resources. The amount of resources needed for each vehicle is dependent on various factors such as the vehicle segment (bus, car, bicycle etc.) and the vehicle size (SUV vs. bicycles).

The less resources are used to produce, operate and maintain a vehicle, the better. In general, the smaller the vehicle the smaller the environmental footprint such as material-, energy consumption land-use, GHG emissions, as well as air pollution. This means, that small vehicles such as bicycles are less resource intensive as heavy vehicles such as trucks.

Overall there really is no “clean” vehicle in terms of environmental footprint. Only walking could be classified as a nearly 100% environmentally friendly mode of transport. To define any environmental impact, the Life Cycle Assessment is a great method to compare different technologies.

To evaluate whether electric vehicles are “cleaner” than their fossil fuel-based counterparts, it is important to compare the same vehicle segments (medium sized EV with medium sized ICE).

Many Life Cycle Assessments focus on GHG Emissions as primary indicator. The NGO Transport and Environment reports that in Europe electric cars emit, on average, almost 3 times less CO2 than equivalent petrol/diesel cars (How clean are electric cars? | Transport & Environment).

A recent study from the universities of Exeter, Nijmegen - in The Netherlands - and Cambridge shows that in 95% of the world, driving an electric car is better for the climate than a petrol car (BBC News) (Study-Link/

To sum it: Electric Vehicles such as electric cars are significantly “cleaner” than their petrol/diesel equivalents. The more renewable energy is used to power them, the better.

Nevertheless, all vehicles contribute to traffic jam, traffic accidents and land consumption. That is why TUMI is not primarily focusing on advocating on an energy transition in transport but also support a broader transformation of the sector. To do so we follow the A-S-I approach (see below).

The Avoid, Shift, Improve (A-S-I) Approach focuses on three prioritised strategies to make the transport sector more sustainable:

(1) avoiding the need for motorized travel through integrated planning and compact city development;

(2) shifting from the most energy consuming and polluting urban transport mode (i.e. cars) to active and public transport and

(3) improving existing modes of transport through zero-emission technologies.

The approach serves as a way to structure policy measures to reduce the environmental impact of transport and thereby improve the quality of life in cities. In the development community, the A-S-I approach was first embraced by international NGOs, as well as multilateral and bilateral development organizations working on transport.

The A-S-I approach is focused on the demand side and offers a more holistic approach for an overall sustainable transport system design.

ASI_TUMI_SUTP_iNUA_No-9_April-2019.pdf (

Yes, it can (to some extent) – but not as a silver bullet. Other mobility choices such as taking public transport or using active modes of transport (walking and cycling) are way more effective than sticking with individual transport (also see A-S-I Approach).

A recent study from the universities of Exeter, Nijmegen - in The Netherlands - and Cambridge shows that in 95% of the world, driving an electric car is better for the climate than a petrol car (BBC News) (Study-Link/ Therefore, if you have to use a car – electric cars are helping in climate mitigation. But if you really want to bring down your emissions, better take the bike, walk and or use public transport.

Charging Technology

There are three main types of charging technologies conductive charging, inductive charging and swapping/changing the battery:

Conductive charging: In conductive charging the battery is charged using a charging cable. Presently it is the cheapest and most efficient technology and hence the most preferred technology for all EV segments. There are 3 main levels of this charging technology:

  • Level 1: The Level 1 is an AC charger and is generally plugged from the normal household socket. It is mostly convenient for home charging or where a vehicle is usually parked for several hours. It is suitable for overnight or weekend charging sessions and provides up to 4 to 5 miles of range per hour.
  • Level 2: The Level 2 is also an AC charger and is faster as compared to Level 1 chargers. They are mostly used at home or public charging stations like workplaces, shopping malls, restaurants, sports complex, cinema halls, etc. It is suitable for locations where an EV is parked at least for an hour. It provides up to 12 to 50 miles of range per hour of charging depending on the power providing capacity of the charger and the charge accepting capacity of EV.
  • Level 3: The Level 3 is a DC charger and it uses Direct Current (DC) which is different than the Alternating Current (AC) commonly available in residential and commercial buildings. DC charging is done at a high voltage and is available in various power levels which allows rapid charging of the EV. It can charge an EV up to 80% in 30 minutes. It is mostly used in places like parking places, Gas stations, Highways, public places and dedicated charging slots. It provides up to 100 mile of range per hour of charging and is most suitable for EV users who are on long trips and are pressed on time.

Inductive Charging: The Inductive charging uses an electromagnetic field to charge EVs without any contact between the EV and charging infrastructure. Induction chargers create an alternative electromagnetic field using an induction coil within the charging base, the second induction coil on the EV takes power from the created alternative electromagnetic field and converts it to electric current to charge the batteries.

This charging process is durable and increases the convenience, aesthetics as there is no need of charging cables. Due to higher energy losses while charging it is more expensive and slower as compared to the conductive charging process. Few cities across the world are using this technology to charge the public transport vehicles like electric buses.

Battery Swapping / Changing: This charging technology involves replacing the discharged batteries with newly charged batteries from a battery swapping station. Battery swapping requires standardizing the battery size and internal connections of EV.

The standardization of battery technology leads to reduced freedom for EV OEMS for innovation in terms of battery design and placement. However, this charging technology enables selling of EVs without the battery and hence helps in reducing the price of EV leading to faster adoption. Building a city- or nation-wide swapping infrastructure requires high initial investments. Few cities across the world are piloting this technology to charge the public transport vehicles like electric buses.

A yearlong laboratory experiment was conducted on 4 similar model of EV in 2012 on a closed test track by using normal and fast charging methods. After accumulation of 50,000 test miles of the vehicles it revealed that a drop in energy capacity from baseline % for the EVs charged only by fast chargers were slightly greater as compared to the vehicles charged with normal Level 2 chargers. However, the actual difference between the overall battery capacity losses was not significant between cars charged with Level 2 and DC Fast chargers.

The statistical overview of the experiment can be accessed here and details on the test methodology and conditions can be accessed here.

Nevertheless, taking care of the battery during charging is always a good idea. Similar to not revving any conventional vehicle when the motor is still cold. So, to avoid stress for the battery cells and therefore battery degradation, fast charging should better be used for long journeys and not for the daily recharge. Same goes for avoiding regular charging temperatures below 0 degrees and very high discharge rates (below 10% State of Charge).

Destination Charging refers to the charging process that happens after the EV user reaches his/her destination, the most common referred to as either home or office. Destination charging usually lasts up to 8 hours and is done with either Level 1 or Level 2 AC charging stations.

Charging Destination refers to the charging process that happens during short stops, the most common referred to as parking place, gas stations, dedicated charging places, etc. The charging usually lasts up to 4 hours and is done with either Level 2 AC chargers or Level 3 DC chargers.

With many countries and cities introducing ordinances for open access of public charging stations to all EV users, it has become very convenient to charge an EV without a need of smartphone and pay with multiple conventional payment options like debit card, credit card, etc.

Most of the new public charging stations are equipped with an open payment system. This allows the EV users to pay with either cards, smartphone, smartphone wallets, ecommerce solutions, mobile applications, etc.

EMSPs also provide their customers with prepaid subscription package options, wherein the customers pay a monthly subscription amount and they can charge their EV up to certain kWh per month on any of EMSP’s network charging stations.

The normal charging stations are uni-directional charging stations i.e. the power flows from the electric power source to the vehicle.

The V2X compatible charging stations is a bi-directional charging station i.e. the energy flows both ways in and out of your EV. The V2X compatible charging station can send the energy back into the power grid or even to your home or your office. The different application of V2X compatible chargers have different names like vehicle to grid (V2G), vehicle to home (V2H) and others. The main benefit of V2X charging station is that you can use your EV as an emergency power source for oneself or the local grids and earn money by selling excess energy back to grid.

There are two different types of charging methods and thus charging stations: those with alternating current (AC) and those with direct current (DC). DC charging is used for fast charging stations, for which there are different types of plug: CCS; CHAdeMO. One can find out which plug is supported on the respective charging station via the app or the online page of the CPO or EMSP.

AC charging stations have the standardized "Type 2" plug. For vehicles with a "Type 1 plug" on the vehicle, there are adapter-charging cables that have a "Type 1 connection" on the vehicle side and a "Type 2 connection" on the charging station side. In the case of alternating current charging stations (AC), the electricity in the vehicle is converted into direct current by the built-in, power inverter or on-board charger.

The charge time of any EV depends on the battery size of the EV; State of charge of the battery and power rating of the electrical charger. For example: the TATA Nexon ev has a usable battery size of 30.2 kWh. If this was empty, full charging with 2.3 kW will take approx.. 13 hours, with 11 kW approx. 3 hours and quick charging with 50 kW takes about 30 minutes to 80% charge level. The maximum charging power is limited by the maximum possible charging power of the EV and that of the charging point.

The normal home charging socket is designed to use for household applications for limited periods of time. Since most of the home sockets have a charging current of 16 A, it will take longer to charge the electric vehicle. The long periods of charging an EV from home sockets may lead to development of hotspots in the home circuit and increase the risks of fire. It is hence recommended to install special wallbox at home for EV charging.

The Wallbox is a compact charging device and could easily be attached to the wall. It provides charging power at a higher power rating and efficiency as compared to normal charging sockets and could be used at home / office or other locations. There are many manufacturers which offer a variety of models for wallboxes. Some of the “home-charging stations” offer additional functionalities like smart charging. The Wallbox also protects against electric shocks, avoids voltage peaks during charging process, measures energy consumption and supports smart charging functionality. It also supports additional functionality like authorization and billing for commercial use.

The home charging station or the wallbox one choose should be guided by two main factors:

First: It must match the requirement of the onboard charger integrated in your electric vehicle. Depending on the EV manufacturers, different EV models are equipped with either single phase or three phase chargers. Hence 1 phase wallbox will not serve the purpose for the EV with an onboard 3 phase charger and vice versa.

Second: The size of the home charging station / Wallbox i.e. either 3.7 kW / 11 kW / 22kW / 50 kW should be selected in co-ordination with local power supplier, power grid Management Company and the sanctioned load of your home. For e.g. if the sanctioned load of your house is 10 kW then a wallbox with a power rating of only 3.7 kW will be technically feasible to be installed at your premises.

Usually the dealers selling the EVs offers the suitable charging station / Wallbox for charging the EV at home. EV buyers can also select a certified Wallbox system available in open market or from the Wallbox models empaneled by the local grid management or energy supplier companies.

One should get the installation done in co-ordination with local energy supplier or from the qualified electrician in accordance with local regulations.

Yes, it is possible to charge an EV with a photovoltaic system (PV). However, due to the intermittent nature of solar power and limited performance of the solar PV system, it is advisable to have it in addition to normal network charging. The size of the usual home electricity storage systems or the electricity storage in PV systems are designed only for household needs and therefore may be too small to be able to charge an EV. The excess electricity from the PV system can, however, be charged into an EV when it is plugged in and not exporting energy to external power grid.

The best way to find the public charging station is to look in the app of your EMSP or CPO. The EMSP / CPO provides a search and find option for nearest available charging point to their end users.

One may also use the local or national level maps of the charging stations developed by local authorities to search of public charging stations along the route. Many EVs also have built in navigation systems which show the next available charging station on a defined route.

Previously EMSP provided restricted access to their charging stations network only to their customers with a valid contract using an access key (rfid, chargecard, etc). The customers will be charged in accordance with the subscription or charge contract signed with the EMSP.

However, many countries have now brought specific ordinances to allow open access to all the public charging stations. This allows the EV users to access all the public charging points and enable them to pay directly using the debit / credit cards, apps, cash, etc. The directives also obliges the EMSPs and CPOs to display the charging prices before the charge process starts.

Yes, one can drive EV across different countries in several regions of the world. Several EMSP in Europe provide a transnational network of charging points to their customers by signing roaming contracts with Roaming service providers.

Roaming service providers also offer solutions to EMSP and CPOs where in EV drivers without a contract can also pay directly through various payment modes at their charging station network.

Hubject, Gireve, and MOBI:E are few of the roaming service providers.

Interoperability (IOP) is the ability of two or more networks, systems, applications, components, or devices from the same vendor, or different vendors, to exchange and subsequently use that information in order to perform required functions.

To give a practical example: Bus Operators will make sure that the charging plug they use for their charging stations will be interoperable with different models of electric buses. This will allow the purchase of new electric buses from different vendors in the future. Therefore they rely on industry charging standards like CCS oder Chademo.

A Charge point Operator (CPO) installs the charging points and undertakes the operations and maintenance role of the charging points. The CPO also undertakes the role of authorizing the charge process, generating a charge data record and subsequently collect the bill amount from the Electric Mobility Service Provider (EMSP). Big CPOs manage the charging point networks using Charge Point Management System.

e.g. Smatrics is a CPO which provides a network of public charging points in Austria and uses a charge point management system to manage its charging point network. Similarly is a Germany based CPO which provides charging point network for home and workplace charging.

Electric Mobility Service Provider (EMSP) provide services to two main stakeholders in the charging business i.e. the CPOs and the end users / EV drivers. EMSP sign access agreements with different CPOs for charging point networks (CPN) and develops a local / regional /national level CPN. EMSP develop charging plans and provide access to the CPN with single access key to the end users. The major roles of the EMSP are initial contract work with CPOs, marketing, provide charge plans & network access to end users and clearing house function.

Certain EMSP also signs contract with a roaming service provider with an aim to provide access to transnational CPN to its end users. Certain CPOs also assumes the role of EMSP.

e.g. Virta is a Germany based EMSP which provides end user services like mobile and web applications, registrations and RFID charging tags, customer portal, charging for unregistered end users. Further Virta also provides services to CPO like charge station management, roaming services, business insights, etc.

Roaming Service provider (RSP) provide access to comprehensive charging point network to the end users of the member EMSP and CPO. Further RSP provides the charge authorization and data-clearing house to charging services across regional / transnational borders.

The main elements of roaming services are:

  • ICT platform: Enables information exchange between Clients using a communication Protocol
  • Data aggregator platform: All the clients data relating to Charging point database, End User information,etc are stored on this platform.

Hubject, Gireve, and MOBI:E are few of the roaming service providers.

Smart Charging refers to a controlled charging process that optimises the energy consumption by the electric vehicle from the electrical power grid

Smart charging supports the grid as well as end user, few of the benefits are:

  • Reduces the power grid management cost by enabling peak alleviation by balancing the supply and demand
  • Enables EV charging with whenever intermittent renewable energy is available
  • Reduces electricity prices for end users during off peak times and/or high availability of renewable energy
Contact us

Together we are TUMI